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a b s t r a c t

The theory for designing distributed piezoelectric modal sensors is well established for

beam structures. However, the current modal sensor theory is limited in scope in that it

can only be applied in the case of classical boundary conditions (i.e., either clamped,

free, simply supported or sliding). In this paper a solution to the problem of finding the

proposed, using the Adomian decomposition method (ADM). A general expression for

designing the shape of a piezoelectric modal sensor is presented, in which the output

signal of the designed sensor is proportional to the response of the target mode. Other

modes are filtered out. The modal sensor shape is expressed as a function of the second

spatial derivative of the structural mode shape function. Based on the ADM and

employing some simple mathematical operations, the closed-form series solution of the

second spatial derivative of the mode shapes can be determined. Then the shapes of the

designed modal sensors are obtained. Finally, some numerical examples are given to

demonstrate the feasibility of the proposed modal sensors. It is shown that, for classical

boundary conditions, the shapes of the modal sensors based on the ADM agree well

with analytical and numerical results given in the literature. For general boundary

conditions it is found that the shape of the modal sensors is influenced by the number of

modes of interest because the second spatial derivatives of the mode shapes are not

orthogonal to one another. The modal sensors for general boundary conditions can be

considered as modal filters within a limited frequency band.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

For many years research has been conducted on the design and implementation of shaped piezoelectric modal sensors
[1,2] as applied to active vibration control (AVC) and active structural acoustic control (ASAC). In general, shaped
piezoelectric sensors made of polyvinylidene fluoride (PVDF) are chosen since these add little loading to light structures
and in addition are easy to cut into desired shapes. The design of modal sensors using shaped PVDF film can be traced back
to Lee and Moon [1]. The PVDF sensors are designed by shaping the surface electrode, whereby the output of the sensor can
be made sensitive to selected modal coordinates, other modal coordinates may be filtered out. Modal sensors measure
either a targeted structural mode [1–8] for AVC or the volume velocity/displacement [9–20] for ASAC. Using modal sensors
in active control reduces spillover, where high-frequency unmodelled modes would influence the stability of the closed-
loop system.
ll rights reserved.

: +41 44 823 4793.

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.12.016
mailto:qibo.mao@empa.ch


ARTICLE IN PRESS

Q. Mao, S. Pietrzko / Journal of Sound and Vibration 329 (2010) 2068–2082 2069
A modal sensor for a beam-type structure can be obtained by varying the sensor width along the length of the beam. If
the sensor covers the entire beam the shape of the sensor may be derived using the mode shape orthogonality property. In
this regard, Lee and Moon [1] have shown for the case of a uniform bending beam with classical boundary conditions that
the functions defined by the surface strains associated with each mode shape form an orthogonal set. As a result, it is
possible to design the shape of the modal sensor by simply assigning a shape function proportional to the second spatial
derivative of the mode shape of interest. Tanaka et al. [2,3,11] discussed shaped PVDF sensors for estimating the radiation
modes or the particular structural mode of interest from a simply supported plate. Gawronski [4] considered the case of
discrete sensors and actuators, and from these derived continuous actuator widths. Anthony [5] performed theoretical and
experimental studies involving the design of PVDF modal sensors for a simply supported non-uniform thickness beam.
Donoso and Bellido [6] proposed a new way to systematically design distributed piezoelectric modal sensors for circular
plates with polar symmetric boundary conditions based on a linear optimization approach. Preumont et al. [17,18] studied
spatial filtering using distributed PVDF films.

Until now, most of the applications of shaped piezoelectric modal sensor have been limited to those involving beams
and plates with classical boundary conditions (i.e., which are either clamped, free, simply supported or sliding). In practice
however, the characteristics of a test structure may very well depart from these classical boundary conditions. Therefore, a
method to design a modal sensor for a bending beam of general boundary conditions has yet to be developed. Recently,
Friswell and Jiana [21,22] presented an optimization approach to design distributed modal sensors for beam and plate
structures based on the finite element method for general boundary conditions.

In this paper, a new computed approach called the Adomian decomposition method [23–29] is introduced to design the
shapes of piezoelectric modal sensors for beams with arbitrary boundary conditions. The Adomian decomposition method
(ADM) is a useful and powerful method for solving linear and nonlinear differential equations. The goal of ADM is to find
the solution of linear and nonlinear, ordinary or partial differential equations without depending on any small parameter
such as the case with the perturbation method. In this method the solution is considered as a sum of an infinite series, and
rapidly convergence to an accurate solution [24,25]. In recent years, it has been applied to the problem of vibration of
structural and mechanical systems [26–29].

Using ADM, the governing differential equation becomes a recursive algebraic equation and boundary conditions
become simple algebraic frequency equations which are suitable for symbolic computation [27,28]. Moreover, after some
simple algebraic operations on these frequency equations, we can obtain the closed-form series solution of mode shape
and the second spatial derivative of the mode shape simultaneously.

A general expression for designing the shape of piezoelectric modal sensor is then presented, in which the output signal
of the designed sensor can measure the selected structural mode and filter out the responses of the other modes. Finally,
some numerical examples are given to demonstrate the feasibility of the proposed modal sensors.
2. Design of the modal sensors using shaped PVDF sensors

Consider a beam with length Lx, width b and thickness h. A shaped PVDF film of constant thickness is attached onto the
top surface and spanned across the entire length of the beam, as shown in Fig. 1. The charge density D3 of the PVDF sensor
can be determined by using the follow constitutive equation [1]:

D3 ¼ e31S1þeS
33E3 (1)

where S1 is the bending strain, eS
33 the permittivity at constant strain, E3 is electric field and e31 is the charge density per

unit strain in the x-direction.
Fig. 1. A shaped PVDF film bonded on a beam: (a) top view and (b) front view.
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Assume that the electrodes of the PVDF film are connected to a charge amplifier, the electric field E3 across the
piezoelectric film will be cancelled [17], that is E3 ¼ 0 and D3 ¼ e31S1. As referred to Lee and Moon’s work [1], the output
charge Q(t) of the PVDF sensor shown in Fig. 1 can be expressed as

Q ðtÞ ¼

Z Lx

0
FðxÞ � D3ðx; tÞdx¼

Z Lx

0
FðxÞ � e31S1ðx; tÞdx¼

hþhp

2

Z Lx

0
FðxÞ � e31

q2wðx; tÞ

qx2

 !
dx (2)

where

S1ðx; tÞ ¼
hþhp

2

q2wðx; tÞ

qx2
;

h and hp are the beam and PVDF sensor thickness, respectively. w(x, t) is the displacement of the beam and F(x) is the PVDF
film shape function.

The displacement distribution of the vibrating beam may be represented by a series expansion:

wðx; tÞ ¼
XN

n ¼ 1

ZnðtÞfnðxÞ (3)

where Zn(t) and fn(x) are the nth modal coordinates and structural mode shape function. N is the index for the highest
order structural mode.

Substituting Eq. (3) into (2), and expressing in dimensionless form, one obtains:

Q ðtÞ ¼
hþhp

2Lx
e31

XN

n ¼ 1

ZnðtÞ

Z 1

0
FðXÞ �

q2FnðXÞ

qx2
dX ¼ S

XN

n ¼ 1

ZnðtÞPn (4)

where X ¼ x=Lx, FnðXÞ ¼fnðxÞ,

S¼
hþhp

2Lx
e31; Pn ¼

Z 1

0
FðXÞ �

q2FnðXÞ

qx2
dX;

is designated as the modal sensitivity [8,22].
To construct a sensor that accurately measures the target structural mode, a shaped PVDF film is used, the output signal

of the sensor should be directly proportional to the target modal information. To design the appropriate PVDF film shape
function F(X), we make an approximation by expanding F(X) as a function of the second derivative of the basis function of
the vibrating beam.

FðXÞ ¼
XN

j ¼ 1

Bj

q2FjðXÞ

qX2
(5)

where Bj are the unknown shape coefficients for the PVDF sensor.
Substituting Eq. (5) into (4), we obtain:

Q ðtÞ ¼ S
XN

n ¼ 1

XN

j ¼ 1

Bk

Z 1

0

q2FnðXÞ

qX2
�
q2FjðXÞ

qX2
dX � ZnðtÞ (6)

Eq. (6) can be simplified as a matrix form:

Q ðtÞ ¼ SBTKg (7)

where B and g are the N�1 vectors. K is an N�N matrix with element:

Kðn; jÞ ¼

Z 1

0

q2FnðXÞ

qX2
�
q2FjðXÞ

qX2
dX (8)

To design a modal sensor for the Jth structural mode which only measures the target Jth structural mode, and is
orthogonal to other modes, for simplicity, we set modal sensitivity Pn in Eq. (4) to

Pn ¼
1 n¼ J

0 naJ
for n¼ 1; . . . ;N

(
(9)

Comparing Eq. (7) and (4) yields:

Q ðtÞ ¼ SBTKg¼ SPTg (10)

where P is an N�1 vector with each element defined in Eq. (9).
From Eqs. (9) and (10), the PVDF sensor shape coefficient vector B can be solved by

BT
¼ PTK�1

¼
XN

j ¼ 1

K�1ðj; JÞ (11)
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For a beam with classical boundary conditions (such as clamped, free, simply supported or sliding), thanks to the
orthogonality of the mode shapes, it is simple to show that K is a diagonal matrix and

K�1ðj; JÞ ¼ 0 jaJ (12)

Thus, the modal sensor shape coefficients Bk for the classical boundary conditions can be simplified to

Bj ¼

1

KJJ
j¼ J;

0 jaJ;
FðxÞ ¼

1

KJJ

q2FJðxÞ

qx2

8><
>: (13)

From Eq. (13), it is shown that the shape of the modal sensor is proportional to the second spatial derivative of the mode
shape of interest. It should be noted again that Eq. (13) is only valid for a beam with classical boundary conditions. Eq. (13)
can be regarded as a special case of Eq. (11). For a beam with general boundary conditions the orthogonality of the second
spatial derivative of the mode shapes cannot be satisfied.

In accordance with the above analysis, to design a modal sensor, the second spatial derivative of the mode shapes must
be obtained. This is discussed in the next section by using ADM technique.

3. Calculation of the second spatial derivative of mode shape by using the ADM

Assuming that the PVDF sensor thickness hp is much smaller than beam thickness h, the mass and stiffness of the sensor
is then negligible compared to the properties of the beam. This is a reasonable assumption since the sensor thickness is
typically 28–110mm. The beam with shaped PVDF sensor shown in Fig. 1 can then be considered as a uniform beam (PVDF
mass and stiffness effect neglected). Assume the beam is elastically restrained at both ends, as shown in Fig. 2. The partial
differential equation describing the free vibration is as follows [27]:

q4wðx; tÞ

qx4
þ

m

EI

q2wðx; tÞ

qt2
¼ 0 (14)

where E is Young’s modulus, I is the cross-sectional moment of inertia of the beam I¼ bh3=12, EI is the bending stiffness.
m=rbh is the mass per unit length and r is the density of the beam.

According to the modal analysis approach (for harmonic free vibration), the w(x, t) can be separated in space and time:

wðx; tÞ ¼fðxÞeiot (15)

where f(x) and o are the structural mode shape function and the natural frequency, respectively. i¼
ffiffiffiffiffiffiffi
�1
p

.
Substituting Eq. (15) in (14) and separating the variables for time t and space x, the ordinary differential equation is

obtained:

d4fðxÞ
dx4

�
mo2

EI
fðxÞ ¼ 0 (16)

The boundary conditions at the ends of the beam shown in Fig. 2 can be expressed as

EI
d2fðxÞ

dx2
�kL1

dfðxÞ
dx
¼ 0; EI

d3fðxÞ
dx3

þkL0fðxÞ ¼ 0 at x¼ 0 (17)

EI
d2fðxÞ

dx2
þkR1

dfðxÞ
dx
¼ 0; EI

d3fðxÞ
dx3

�kR2fðxÞ ¼ 0 at x¼ Lx (18)

where kL0 and kR0 are the stiffness of the translational springs, and kL1 and kR1 are the stiffness of the rotational springs at
x=0 and Lx, respectively.

Eq. (16) can be rewritten in dimensionless form:

d4FðXÞ
dX4

�kFðXÞ ¼ 0 (19)

where X ¼ x=Lx, FðXÞ ¼fðxÞ, k¼mo2L4
x=EI is the dimensionless natural frequency parameter.
Fig. 2. A uniform beam elastically restrained at both ends.
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According to ADM [23–28], F(X) in Eq. (19) can be expressed in terms of an infinite series:

FðXÞ ¼
X1

m ¼ 0

F½m�ðXÞ (20)

where the component function F½m�ðXÞ will be determined recurrently.
Imposing a linear operator L¼ d4=dX4, the inverse operator of L is then a 4-fold integral operator defined by

L�1 ¼

Z Z Z Z
ð. . .ÞdX dX dX dX (21)

and

L�1LðFðXÞÞ ¼FðXÞ�Fð0Þ�
dFð0Þ

dX
X�

d2Fð0Þ
dX2

X2

2
�

d3Fð0Þ
dX3

X3

6
(22)

Applying L�1 on both sides of Eq. (19), we obtain:

L�1LðFðXÞÞ ¼ kL�1ðFðXÞÞ ¼ kL�1
� X1

m ¼ 0

F½m�ðXÞ
�

(23)

Comparing Eqs. (23) and (22), we obtain:

FðXÞ ¼Fð0Þþ
dFð0Þ

dX
Xþ

d2Fð0Þ
dX2

X2

2
þ

d3Fð0Þ
dX3

X3

6
þkL�1

� X1
m ¼ 0

F½m�ðXÞ
�

(24)
Table 1
Values of the stiffness of the translational and the rotational springs for several classical boundary conditions.

KL0 KL1 KR0 KR1

Clamped-free 109 109 0 0

Simply supported 109 0 109 0

Clamped–clamped 109 109 109 109
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Fig. 3. The modal sensor shapes of the first four modes for the clamped-free beam.
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Fig. 5. The modal sensor shapes of the first four modes for the clamped–clamped beam.

Table 2
Two cases illustrating the design of modal sensors.

Boundary conditions Case A Case B

At left end (X=0) KR0=109, KR1=109 KL0=109, KL1=10

At right end (X=1) KR0=10, KR1=10 KR0=109, KR1=10
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Fig. 4. The modal sensor shapes of the first four modes for the simply supported beam.

Q. Mao, S. Pietrzko / Journal of Sound and Vibration 329 (2010) 2068–2082 2073



ARTICLE IN PRESS

Q. Mao, S. Pietrzko / Journal of Sound and Vibration 329 (2010) 2068–20822074
According to standard Adomian decomposition method (see Appendix A), the approximate solution of Eq. (24) is
determined by using the following recurrence relation:

F½0�ðXÞ ¼Fð0Þþ
dFð0Þ

dX
Xþ

d2Fð0Þ
dX2

X2

2
þ

d3Fð0Þ
dX3

X3

6
(25a)

F½m�ðXÞ ¼ kL�1ðF½m�1�
ðXÞÞ mZ1 (25b)

We may approximate the above solution by the truncated series:

FðXÞ ¼
XM�1

m ¼ 0

F½m�ðXÞ ¼
X3

j ¼ 0

djFð0Þ
dXj

XM�1

m ¼ 0

km X4mþ j

ð4mþ jÞ!

� �
(26)

Eq. (26) implies that
P1

m ¼ M F½m�ðXÞ is negligibly small. The number of terms M is determined by convergence
requirement in practice.

According to Eq. (26), the first, second and third spatial derivative of the mode shapes can be expressed as

dFðXÞ
dX

¼Fð0Þ
XM�1

m ¼ 1

km X4m�1

ð4m�1Þ!

� �
þ
X3

j ¼ 1

djFð0Þ
dXj

XM�1

m ¼ 0

km X4mþ j�1

ð4mþ j�1Þ!

� �
(27)

d2FðXÞ
dX2

¼
X1

j ¼ 0

djFð0Þ
dXj

XM�1

m ¼ 1

km X4mþ j�2

ð4mþ j�2Þ!

� �
þ
X3

j ¼ 2

djFð0Þ
dXj

XM�1

m ¼ 0

km X4mþ j�2

ð4mþ j�2Þ!

� �
(28)

d3FðXÞ
dX3

¼
X2

j ¼ 0

djFð0Þ
dXj

XM�1

m ¼ 1

km X4mþ j�3

ð4mþ j�3Þ!

� �
þ

d3Fð0Þ
dX3

XM�1

m ¼ 0

km X4m

ð4mÞ!

� �
(29)

To calculate d2FðXÞ=dX2 in Eq. (28), it can be shown there are five unknown parameters, namely dnFð0Þ=dXn (n=0, 1, 2,
3) and k, to be determined. These parameters can be determined by the boundary condition equations.
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Fig. 6. (a) The first ten mode shapes and (b) the corresponding second spatial derivative of the mode shapes for Case A.
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Rewriting the boundary condition equations in Eqs. (17) and (18) into dimensionless form, we obtain:

d2Fð0Þ
dX2

�KL1
dFð0Þ

dX
¼ 0;

d3Fð0Þ
dX3

þKL0Fð0Þ ¼ 0 (30)

d2Fð1Þ
dX2

þKR1
dFð1Þ

dX
¼ 0;

d3Fð1Þ
dX3

�KR0Fð1Þ ¼ 0 (31)

where KL1 ¼ kL1Lx=EI, KL0 ¼ kL0L3
x=EI, KR1 ¼ kR1Lx=EI, KR0 ¼ kR0L3

x=EI.
Substituting Eqs. (26)–(29) into Eqs. (30) and (31), we obtain:

0 �KL1 1 0

KL0 0 0 1

D31 D32 D33 D34

D41 D42 D43 D44

2
66664

3
77775

Fð0Þ
dFð0Þ

dX

d2Fð0Þ
dX2

d3Fð0Þ
dX3

2
66666666664

3
77777777775
¼ 0 (32)

where

D31 ¼
XM�1

m ¼ 1

km

ð4m�2Þ!
þKR1

km

ð4m�1Þ!

� �
; D32 ¼

XM�1

m ¼ 1

km

ð4m�1Þ!

� �
þKR1

XM�1

m ¼ 0

km

ð4mÞ!

� �

D33 ¼
XM�1

m ¼ 0

km

ð4mÞ!
þKR1

km

ð4mþ1Þ!

� �
; D34 ¼

XM�1

m ¼ 0

km

ð4mþ1Þ!
þKR1

km

ð4mþ2Þ!

� �

D41 ¼
XM�1

m ¼ 1

km

ð4m�3Þ!

� �
�KR0

XM�1

m ¼ 0

km

ð4mÞ!

� �
; D42 ¼

XM�1

m ¼ 1

km

ð4m�2Þ!

� �
�KR0

XM�1

m ¼ 0

km

ð4mþ1Þ!

� �
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Fig. 7. (a) The first four mode shapes and (b) the corresponding second spatial derivative of the mode shapes for Case B.
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D43 ¼
XM�1

m ¼ 1

km

ð4m�1Þ!

� �
�KR0

XM�1

m ¼ 0

km

ð4mþ2Þ!

� �
; D44 ¼

XM�1

m ¼ 0

km

ð4mÞ!

� �
�KR0

XM�1

m ¼ 0

km

ð4mþ3Þ!

� �

From Eq. (32), the dimensionless frequency parameter k can be solved by

det

0 �KRL 1 0

KTL 0 0 1

D31 D32 D33 D34

D41 D42 D43 D44

2
66664

3
77775¼ 0 (33)
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Fig. 9. The normalized PVDF shapes for the first modal sensors and corresponding normalized modal sensitivity Pn for Case A: (a) PVDF shapes and

(b) modal sensitivity Pn.
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Notice that the matrix in Eq. (32) is singular at each frequency parameter k, and the unknown parameters dnFð0Þ=dXn

(n=0, 1, 2, 3) cannot be directly determined. However, one may choose one quantity of dnFð0Þ=dXn as the arbitrary nonzero
constant, and the remaining three as functions of this arbitrary constant. Without loss of generality, one may choose
Fð0Þ ¼ 1. Hence, the remaining three can be solved as functions by using Eq. (32):
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By using Eqs. (34) and (28), the closed-form series solution for the second spatial derivative of the mode shapes
q2FðXÞ=qX2 can be obtained. It can be found that the solution of q2FðXÞ=qX2 by using ADM is a continuous function and not
discrete numerical values at knot point by finite element or finite difference methods.

Substituting q2FðXÞ=qX2 into Eqs. (8) and (11), the PVDF sensor shape coefficients Bj are determined: Then substituting
Bj into Eq. (5), the shape of the modal sensor can be obtained.

4. Numerical calculations

In order to verify the proposed method to design the PVDF modal sensor, the shapes of modal sensors with classical
boundary conditions are first calculated and compared with analytical results in the literature [1,2,4]. The classical
boundary conditions can be considered as special cases of Eq. (32). For example, the clamped boundary condition may
basically be obtained by setting the stiffness of the linear and rotational springs to be extremely large. The stiffness of the
translational and the rotational springs for the classical boundary conditions listed in Table 1 are used for the ADM
calculations. The ADM solutions are truncated to M=20 in Eq. (26) throughout this paper.

According to the analysis in Section 2, for classical boundary conditions the shape of the modal sensor is proportional to
the second spatial derivative of the mode shape of interest. Figs. 3–5 compare the shapes of the PVDF modal sensors for the
first four structural modes by using the analytical method and the ADM for a clamped-free, simply supported and
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clamped–clamped beam, respectively. The negative value of F(X) means that the electric polarity of PVDF film is reversed.
The sensor shapes can be observed as the mirror image of the corresponding mode shapes against the wall for the case of
the clamped-free beam (See Fig. 3). For simply supported beam (See Fig. 4), the sensor shape is the same as the target
structural mode shape. From Figs. 3–5, it can be shown that the PVDF sensor shapes designed by ADM are the same as the
analytical results. This means that the design procedure using ADM has been successful.

In order to verify the ADM for general boundary conditions, two cases of general boundary conditions are discussed. The
stiffness of the translational and the rotational springs for these two cases are listed in Table 2. Figs. 6 and 7 show the first
ten mode shapes F(X) and the corresponding second spatial derivative of the mode shapes q2FðXÞ=qX2 for both cases. Fig. 8
shows the function Knj in Eq. (8) for Case A and B, respectively. From Fig. 8, it can be seen that the orthogonality of the
second spatial derivative of the mode shapes cannot be satisfied for both cases. This is to be expected and implies that the
modal sensor shape function F(X) will not be proportional to the second spatial derivative of the mode shape of interest.

Figs. 9 and 10 show the normalized PVDF shapes for the first modal sensors and corresponding normalized modal
sensitivity Pm as defined in Eq. (4) for Case A and Case B, respectively. From Figs. 9 and 10, it can be shown that the modal
sensitivities P1=1, and Pn=0 (n=2–N). This implies that by using ADM the modal sensors can filter out the responses of
other involved modes, if for example, the first 4 modes involved for the design of modal sensor (N=4), Pn (n=2, 3, 4) are
zero. Note that Pn (n44) is not zero. This implies that this modal sensor may observe the responses of the N 4 4 modes.
This is to be expected since the designed sensor only considers the first 4 modes. If N=10 is used, the designed modal
sensors can filter out the responses of the 2nd–10th modes. It should be noted that the PVDF shapes depend on the number
of the modes of interest. If more modes involved, the sensor shapes are more complex. Figs. 11 and 12 show the normalized
PVDF shapes for the second modal sensors and corresponding normalized modal sensitivity Pm for Cases A and B,
respectively. It can be shown that the modal sensitivities P2=1, and Pn=0 (n=1, 3–N).

To further demonstrate the performances of the sensors, an aluminum beam with dimensions of 500 mm�40 mm�5
mm is considered. The density and Young’s modulus of the beam are 2700 Kg/m3 and 7�1010 N/m2, respectively. Assume
that modal damping is 0.01. A point force located at x0 ¼ Lx=10 is used as the excitation. The first 10 natural frequencies
calculated by ADM are listed in Table 3. Figs. 13 and 14 show the frequency response function (FRF) magnitudes of the
modal sensors designed for the first and second modes for Cases A and B, respectively. The FRFs are the sensor current
output IðtÞ ¼ dQ ðtÞ=dt which are proportional to modal velocity dZðtÞ=dt. The FRFs are normalized at the natural frequency
of the target mode. For low damping and well separated modes, the magnitude at a resonance peak is dominated by the
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Table 3
The first 10 natural frequencies for the beam with different boundary conditions (Hz).

Mode 1 2 3 4 5 6 7 8 9 10

Case A 46.2 184. 7 415.5 738.6 1153.9 1661.2 2260.5 2951.6 3734.3 4608.4

Case B 34.5 133.2 327.4 611.9 987.0 1452.9 2010.0 2658.3 3397.8 4228.2

Q. Mao, S. Pietrzko / Journal of Sound and Vibration 329 (2010) 2068–2082 2079
contribution of the corresponding mode. The responses at the first and second natural frequencies dominate the FRFs in
Figs. 13 and 14, respectively, as expected. The FRFs at high frequencies are strongly dependant on the shape of modal
sensors and the modes involved. The proposed modal sensors can measure the target mode among the first N modes and
filter out the rest of them. If N modes are involved in the design of modal sensor, no peak appears at the natural frequencies
of those N modes except for the target mode. From Figs. 13 and 14, it can be shown that the modal sensor designed by
N=10 modes can be considered to be a perfect modal filter in the frequency range 0–5000 Hz for both cases. It is concluded
that for general boundary conditions the modal sensors can be considered to be modal filters in a limited frequency band.
5. Conclusions

A unified and systematic procedure is given to design shaped piezoelectric modal sensors for a beam with arbitrary
boundary conditions by using the Adomian decomposition method (ADM). First, a general expression for designing the shape of
piezoelectric modal sensor is presented based on the second spatial derivative of the mode shapes. Then the closed-form series
solution for the second spatial derivative of the mode shapes is determined by using the ADM and performing some simple
mathematical operations. The numerical results show that the PVDF modal sensor shapes designed by ADM are the same as the
analytical results for the classical boundary conditions. This implies that the design procedure by using ADM has been
successful, since for classical boundary conditions the shape of the modal sensor is proportional to the second spatial derivative
of the mode shape of interest. Finally, two numerical examples of the beam with general boundary conditions are given. It is
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shown that the modal sensors for general boundary conditions can be considered as modal filters within a limited frequency
band. It should be noted that the proposed method for the design of modal sensors is universally applicable to arbitrary
boundary conditions, including all classical cases. The design of modal sensors with different boundary conditions simply
involves changing the value of stiffness of the translational and the rotational springs at the ends of the beam, and does not
require any changes in the solution procedures or algorithms. However, the proposed method requires that the boundary
conditions or the second spatial derivative of mode shapes q2FðXÞ=qX2 should be known accurately. Theoretical and
experimental modal analysis technique based on PVDF sensor to directly obtain q2FðXÞ=qX2, proposed by Ref. [30], will be the
subject of further research.

Appendix A. A brief review of Adomian decomposition method (ADM)

In this appendix, the concept of Adomian decomposition method (ADM) is briefly introduced. Consider the general
nonlinear functional equation:

LuðxÞþRuðxÞþNuðxÞ ¼ gðxÞ (A.1)

where L is a linear invertible operator of highest-order derivative with respect to x. R is the remainder linear operator. N is
the nonlinear operator, and g(x) is the source term.

As L is invertible, Eq. (A.1) can be rewritten as

L�1LuðxÞ ¼ L�1gðxÞ�L�1RuðxÞ�L�1NuðxÞ (A.2)

where L�1 can be an integral operator defined from 0 to x.
Assume that L¼ d4=dx4, we will have:

L�1 ¼

Z x

0

Z x

0

Z x

0

Z x

0
ð. . .Þdx dx dx dx (A.3)

and

L�1LuðxÞ ¼ uðxÞ�uð0Þ�x
duð0Þ

dx
�

x2

2

d2uð0Þ

dx2
�

x3

6

d3uð0Þ

dx3
(A.4)

Comparing Eq. (A.4) and (A.2), we obtain:

uðxÞ ¼ uð0Þþx
duð0Þ

dx
þ

x2

2

d2uð0Þ

dx2
þ

x3

6

d3uð0Þ

dx3
þL�1gðxÞ�L�1RuðxÞ�L�1NuðxÞ (A.5)

According to the standard Adomian decomposition method [23–25], it defines the solution u(x) by an infinite series of
the form:

uðxÞ ¼
X1

m ¼ 0

umðxÞ (A.6)

And for the nonlinear term Nu(x), it defines:

NuðxÞ ¼
X1

m ¼ 0

AmðxÞ (A.7)

where the Am are called Adomian’s polynomials [24,25].
Substituting Eqs. (A.6) and (A.7) into Eq. (A.5), we obtain:

X1
m ¼ 0

umðxÞ ¼ u0ðxÞ�L�1R
X1

m ¼ 0

umðxÞ�L�1
X1

m ¼ 0

AmðxÞ (A.8)

where u0(x) is defined as

u0ðxÞ ¼ uð0Þþx
duð0Þ

dx
þ

x2

2

d2uð0Þ

dx2
þ

x3

6

d3uð0Þ

dx3
þL�1gðxÞ (A.9)

Finally, each term um(x) in Eq. (A.8) is deduced by the following recurrence relation:

u1ðxÞ ¼�L�1Ru0ðxÞ�L�1A0ðxÞ

u2ðxÞ ¼�L�1Ru1ðxÞ�L�1A1ðxÞ

^

umþ1ðxÞ ¼�L�1RumðxÞ�L�1AmðxÞ

8>>>><
>>>>:

(A.10)

Substituting Eqs. (A.9) and (A.10) into Eq. (A.6), we can obtain the solution of u(x) if the series in Eq. (A.10) converges.
The convergence of ADM is proved by Refs. [31,32].
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